Estimation of Biodiesel Yield using Fast Decorrelated Neural Network Ensemble
نویسندگان
چکیده
The accurate and reliable online measurement of the product yield is very essential for the control and optimization of the biodiesel process. A biodiesel yield prediction model based on the fast decorrelated neural network ensembles (FDNNE) was established to enhance the estimated performance. The random vector functional link (RVFL) networks were inserted into the fast decorrelated neural network ensemble frame as the base model since it could provide better generalized performance and faster speed. The FDNNE product yield prediction model initializes the hidden layer parameters of base models randomly, and calculates the output layer parameters using the least square method with negative correlation learning. Simulation results show that the proposed method has relatively higher accuracy and reliability compared with the single RVFL model.
منابع مشابه
Using Artificial Neural Network for Estimation of Density and Viscosities of Biodiesel–Diesel Blends
In recent years, biodiesel has been considered as a good alternative of diesel fuels. Density and viscosity are two important properties of these fuels. In this study, density and kinematic viscosity of biodiesel-diesel blends were estimated by using artificial neural network (ANN). A three-layer feed forward neural network with Levenberg-Marquard (LM) algorithm was used for learning empirical ...
متن کاملUsing Artificial Neural Network for Estimation of Density and Viscosities of Biodiesel–Diesel Blends
In recent years, biodiesel has been considered as a good alternative of diesel fuels. Density and viscosity are two important properties of these fuels. In this study, density and kinematic viscosity of biodiesel-diesel blends were estimated by using artificial neural network (ANN). A three-layer feed forward neural network with Levenberg-Marquard (LM) algorithm was used for learning empirical ...
متن کاملMarkovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملEstimation of bremsstrahlung photon fluence from aluminum by artificial neural network
Background: As bremsstrahlung photon beam fluence is important parameter to be known in a photonuclear reaction experiment as the number of produced particle is strongly depends on photon fluence. Materials and Methods: Photon production yield from different thickness of aluminum target has been estimated using artificial neural network (ANN) model. Target thickness and incoming electr...
متن کاملArtificial neural network model to predict the performance of a diesel power generator fueled with biodiesel
Alternative fuels are intensively investigated for the replacement of the diesel fuel. Today the diesel power generators are mostly used in the various industrial companies in Iran. Therefore, it is necessary to estimate the level of performance of the diesel power generators fueled with biofuels. For the first time, in this study, the prediction of the performance of a diesel power generator m...
متن کامل